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Abstract

The formulation of energy transport in electron and lattice sub-systems due to the laser ultra-short-pulse heating of metallic surface is
carried out using an electron kinetic theory model. The rate of electron energy gain from the irradiated field and its dissipation through
the collisional process are taken into account in the analysis. The constant and variable physical properties are introduced in the numer-
ical simulations. The two-equation and electron kinetic theory models formulated previously are also employed for the comparison pur-
poses. It is found that the improved electron kinetic theory formulation predicts relatively lower lattice site temperatures as compared to
the two-equation and electron kinetic theory models formulated previously. The results of the improved formulation is similar to that
obtained for the hyperbolic heating model.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

During the laser heating of the metallic substrates, elec-
trons within the absorption depth of the substrate material
gain energy from the irradiated field through the absorp-
tion process. This, in turn, increases the electron energy
and results in transferring of their excess energy to lattice
site through scattering, which depends upon the duration
of the interaction. In the case of short-pulses (slightly
higher than the electron–phonon interaction time), elec-
trons undergo few collisions with lattice site, since the elec-
tron–phonon collision time is in the order of 0.02 ps [1].
Moreover, electrons in the surface region continuously gain
energy from the irradiated field, which in turn results in
energy differences between the electrons and the lattice site
in this region. The specific heat capacity of electron is much
smaller than its counterpart corresponding to the lattice
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site; consequently, electron temperature increases rapidly
while lattice site temperature increase is gradual during
the short heating duration. The temperature differential
between electron and lattice sub-systems results in non-
equilibrium energy transport in the substrate material.
However, energy distribution of the excited electrons may
not be uniform in the surface region and also varies with
time. This causes temperature differential occurring in the
electron sub-system. Consequently, when modelling the
heating process, the non-equilibrium energy transport
and time variation effect of the energy transport from elec-
tron to lattice sub-systems should be accommodated in the
analysis.

Considerable research studies were carried out to
explore the laser short pulse heating of solid surfaces.
Anisimov et al. [2] investigated the effect of intense light
fluxes on metals. They introduced the electronic thermal
conductivity in the model. Laser ultra-short pulse interac-
tion with metals was studied by Agranat et al. [3]. They
indicated that above certain laser power intensities, temper-
ature of the electron sub-system was detached from that of
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Nomenclature

A A ¼ fkss

k2

B (B = k) where k is thermal conductivity (W/
m K)

C C ¼ fk
k2 1� fkss

qCpk2

� �
D D ¼ qCp � fkss

k2

ABS absolute value
Ce electron heat capacity (J/m3 K)
Cl lattice heat capacity (J/m3 K)
Cp specific heat of lattice site (J/kg K)
DE energy transferred to lattice site (J)
f fraction of excess energy exchange
G electron phonon coupling factor (W/m3 K)
I0 laser peak power intensity (W/m2)
J total energy carried by a laser pulse divided by

the laser spot cross section (J/m2)
k thermal conductivity (W/m K)
kB Boltzmann’s constant (1.38 · 10�23 J/K)
me electron mass (kg)
N electron number density (1/m3)
rf reflection coefficient

S source term
Tl lattice site temperature (K)
Te electron temperature (K)
Td Debye temperature (K)
t time (s)
tp FWHM duration of the laser pulse (s)
Dt time increment (s)
V electron mean velocity (m/s)
s spatial coordinates corresponding to the elec-

tron movement (m)
x spatial coordinates corresponding to the x-axis

for phonon (m)
Dx spatial increment (m)
a thermal diffusivity (m2/s)
d absorption coefficient (1/m)
k mean free path of electrons (m)
q density (kg/m3)
sp electron mean free time between electron–pho-

non coupling (s)
ss electron–phonon characteristic time ss ¼ Ce

G

� �
(s)
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ion sub-system. A non-local macroscopic formulation of
heat transport due to steep temperature gradients was con-
sidered by Luciani and Mora [4]. They indicated that the
expression derived for the heat flux described fairly well
the heat transport in a steep temperature gradient. Fuji-
moto et al. [5] investigated non-equilibrium temperatures
in electron and lattice sub-systems during the femtosecond
laser heating of metallic tungsten. They showed from
pump-probe measurements that a transient non-equilib-
rium temperature difference between electron and lattice
sub-systems occurred and the electron–phonon energy
relaxation time of several hundred femtoseconds resulted.
The generation of non-equilibrium electron and lattice tem-
peratures in copper by picosecond laser pulses was investi-
gated by Eesley [1]. He indicated that the measurement
results agreed well with the model based on separation of
the one-dimensional heat flow equation into electron and
lattice sub-systems. Thermal relaxation of electrons in met-
als was formulated by Allen [6]. He developed a simple
expression for the thermal relaxation rate. The femtosec-
ond pump-probe measurements of the electron–phonon
coupling constant within films of metals and components
were carried out by Brorson et al. [7]. They indicated that
the measurement results agreed well with the theoretical
predictions. The hyperbolic heat conduction due to a mode
locked laser pulses was studied by Hector et al. [8]. They
showed that the differences between the hyperbolic and
parabolic model became less extreme as the pulse frequency
decreased. The comparative studies on non-linear hyper-
bolic and parabolic heat conduction for various boundary
conditions were considered by Kar et al. [9]. They indicated
that as time progresses, the results of the hyperbolic and
parabolic conduction became identical due to the relaxa-
tion term, which became unimportant for large heating
periods. Heat transfer mechanisms during laser short-pulse
heating of metals was studied by Qiu and Tien [10]. They
showed that the solution of the Boltzmann equation leaded
to a hyperbolic heat flux equation for electrons. A relaxa-
tion model for heat conduction and generation was exam-
ined by Malinowski [11]. He indicated that the relaxation
solution did not tend to converge the corresponding para-
bolic solution. The time-resolved electron temperature
measurement in a highly excited gold target was carried
out by Wang et al. [12]. They indicated that both elec-
tron–phonon and electron–electron scattering contributed
to the electron relaxation rate. A universal constitutive
equation between the heat flux vector and the temperature
gradient was proposed by Tzou [13]. He showed that the
universal form of the energy equation facilitated identifica-
tions of the physical parameters governing the transition
from one mechanism to another such as diffusion or wave
to electron–phonon interaction. The non-equilibrium laser
heating of metal films was investigated by Al-Nimr and
Al-Masoud [14]. They simplified the governing equations
and introduced an analytical solution to the heating prob-
lem. The unsteady solution of a unified heat conduction
equation was presented by Lin et al. [15]. They discussed
the applicability of the solution presented. A formulation
of hyperbolic heat conduction based on a scalar field was
proposed by Barletta and Zanchini [16]. They indicated
that the proposed formulation of the heating problem
was especially useful when step changes (in time evolution
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of either the boundary temperature or the boundary heat
flux occurred) were presented. The ballistic approach for
heat conduction equations based on Boltzmann equation
was presented by Chen [17]. He showed that the ballistic
equations developed were a better approximation than
the Fourier law and Cattaneo equation for heat conduction
at the scales when the device characteristic length was com-
parable to the heat-carrier mean free path and/or charac-
teristic time was comparable to the heat-carrier relaxation
time. Voisin et al. [18] were discussed the femtosecond opti-
cal response of noble metal nanoparticles and its connec-
tion to the ultra-fast electron dynamics in the light of the
results of high-sensitivity femtosecond pump-probe experi-
ment. The findings were compared to the ones in the bulk
materials. Electron kinetic theory approach was introduced
by Yilbas [19] when modeling the laser heating process.
The governing equations of energy transport was based
on the collisional process that takes place between the
excited electrons and the phonons. Yilbas and Shuja [20]
showed that the predictions of the electron kinetic theory
approach, the two equation model, and the Fourier heating
model became identical for the heating periods greater than
sub-nanoseconds. The comparison of one and three-dimen-
sional energy transport due to a laser heating pulse was
studied by Yilbas [21]. He indicated that temperature pro-
files obtained from one and three-dimensional models were
almost identical during the early heating period (shorter
than the thermalization time). In this case, the time varia-
tion of electron excess energy transfer to lattice sub-system
becomes important during the short heating period.

The hyperbolic model for laser short-pulse heating pro-
cess was introduced using the Boltzmann’s equations
[10,17]. Moreover, the electron kinetic theory approach
can also be used to model the non-equilibrium energy
transport and time variation effect of the energy transport
from electron to lattice sub-systems. In the present study,
ultra-short laser pulse heating of copper is considered
and the energy transport due to a ultra-short laser heating
pulse is formulated using an electron kinetic theory
approach. The effect of ultra-short heating duration on
the energy absorption and its transportation in the electron
and lattice sub-systems is accommodated in the analysis.
Nsx

Nxs

A B

dξ
2. Mathematical analysis of heating process

The mathematical arrangements of the two-equation
model and electron kinetic theory approach are presented
briefly, since the details of the analyses can be found else-
where [1,22,23].
XS X = 0ξ

ds
dx

Fig. 1. Electron movement in the surface region (x = 0 is the free surface).
2.1. Two-equation model

The two-equation model representing the energy
exchange mechanism during phonon absorption and elec-
tron–phonon coupling after one-dimensional consideration
can be written as [1]:
Ce

oT eðs; tÞ
ot

¼ r � ðkrT eðs; tÞÞ � G½T eðs; tÞ � T lðx; tÞ� þ S

Cl

oT lðx; tÞ
ot

¼ G½T eðs; tÞ � T lðx; tÞ�

ð1Þ
Te(s, t) and Tl(x, t) are the electron and lattice site temper-
atures, S is the laser source term (I0dexp(�dx)), and Ce

and Cl are the electron and lattice heat capacities, respec-
tively. G is the electron–phonon coupling factor, given by
[24]:

G ¼ p2meNV 2

6spT eðs; tÞ
ð2Þ

where me, N, V , and sp are electron mass, electron number
density, electron drift velocity, and the electron–phonon
collision time, respectively.

2.2. Electron kinetic theory approach

In order to formulate the electron kinetic theory
approach for the laser short-pulse heating process, the
investigation into the electron motion in the surface region
of the metallic substrates is necessary. The electron motion
in the surface region of the metals due to the irradiated field
can be shown schematically in Fig. 1. Electrons travel from
surface to solid bulk as well as bulk to solid. Electrons
reaching the surface can escape once their energy exceeds
the surface potential barrier. Consequently, the number
of electrons with w fraction reaching the surface can man-
age to escape. In order to account for the reflected electrons
from the surface, a mirror image at the surface is consid-
ered [19]. Consider the location A in Fig. 1, the net flow
of N sx ð� N

6
Þ number of electrons towards the surface

occurs and w fraction of these electrons may escape from
the surface. The situation, which occurs at location A in
Fig. 1 is an exact mirror image of that corresponding to
point B, i.e. (1 � w)Nsx number electrons still flow towards
the surface from location B, i.e. (1 � w)Nsx electrons flow
to the right and N

6
to the left at location B (Fig. 1). In the

case of location A approaches to location B, the number



2230 B.S. Yilbas / International Journal of Heat and Mass Transfer 49 (2006) 2227–2238
of electrons Nsx, which flow from ‘‘s’’ to ‘‘x’’ changes dis-
continuously at s = 0 and at s = x. These changes can be
summarized as follows:

In the negative direction of x

�1 < s < x : Nxs ¼
N
6

x < s < 0 : Nxs ¼ ð1� wÞN
6

0 < s <1 : N xs ¼
N
6

ð3Þ

and
In the positive direction of x

�1 < s < 0 : Nsx ¼
N
6

0 < s < x : Nsx ¼ ð1� wÞN
6

x < s <1 : Nsx ¼
N
6

ð4Þ

Moreover, at all locations:

Nsx þ N xs ¼ ð2� wÞN
6

where Nxs is the number of electrons, which flow from ‘‘x’’
to ‘‘s’’.

It should be noted that changes in Nsx follows a distribu-
tion, which can be described by a rectangle function of unit
height and width ‘‘x’’ centered on the positive s ¼ x

2
. Con-

sequently, the rectangle function can be written asY ðs� x
2
Þ

x
¼
Y ð2s� xÞ

2x
ð5Þ

whereY ð2s� xÞ
2x

¼ 0 for j2s� xj > 1

2

and

Y ð2s� xÞ
2x

¼ 1 for j2s� xj < ½xj ð6Þ

Therefore, the electron distribution can be described as

Nsx ¼
N
6

1� w
Y ð2s� xÞ

2x

� �

with N sx þ Nxs ¼ ð1� wÞN
6

ð7Þ

It should be noted that electron energy, which is charac-
terized by temperature Te(s, t), is augmented from the
initial Te(s, t) by an amount equal to that absorbed in
travelling from s to x. The total amount of energy, which
is absorbed in an element dn, area A in time dt is

I0Adt dnf 0ðnÞ ð8Þ
where I0 and f

0
(n) are the laser peak power intensity and the

intensity distribution function in the absorption depth of
the solid material, since all the beam energy is absorbed
in the x-axis. The electron density can vary along the
x-axis, in particular, the number of electrons travelling
from ds to dx may not be the same as that from dx to
ds. Therefore, the portion of energy which is absorbed by
electrons which travel from ds to dx in dt is

I0Adtf 0ðnÞdn
N sx

N sx þ Nxs
ð9Þ

where Nsx and Nxs are the number of electrons which travel
from s to x and from x to s, respectively. The total number
of electrons which travel from ds to dx in this time is

NsxAV dt ð10Þ

where V is electron mean velocity. Hence, the average
energy absorbed by one electron in dn in time dt is

I0

f 0ðnÞdn

ðNsx þ N xsÞV
ð11Þ

and the total amount of energy absorbed by this electron
from dx to ds isZ s

x
I0

f 0ðnÞdn

ðN sx þ NxsÞV
ð12Þ

This expression gives the extra energy gain by the elec-
trons in travelling from ds to dx.

Electrons receive energy from the irradiated field and
make collisions among them selves as well as lattice site
ions and they transfer some fraction of their excess energy
through the collisional process, i.e. electrons after the first
collision scatter and make further collisions with less ener-
getic electrons and lattice site ions. The energy exchange
between energetic electrons, due to absorption of the irra-
diated field, and other species can be formulated after con-
sidering the collision probability of energetic electrons.

Consider the probability of electrons travelling a dis-
tance ‘‘x’’ without making a collision is [25]:

exp � x
k

� �
where x < 2k and k is the mean free path of the electrons.
Consider Fig. 1, the probability of electrons, which make
collision in B can be written as

1� exp � x
k

� �
or

1� 1� dx
k
þ � � �

� �

or

� dx
k

provided that x < 2k. The probability of electrons which
last collided in B now colliding in A is

ds
k

exp � jx� sj
k

� �
dx
k
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However, the number of electrons (Nsx) leaving the loca-
tion A in Fig. 1, area A in time dt is

NsxAV dt

where Nsx is the number density of electrons which transfer
energy from dx to ds, and V is the mean electron velocity.
The number these electrons which have just collided in
location A is

NsxAV dt
ds
k

dx
k

exp � jx� sj
k

� �

where ds
k

dx
k exp � jx�sj

k

� �
is the probability of electrons just

collided in location A.
If the temperature of lattice site in dx is Tl(x, t) and the

temperature of the electrons when they arrive at dx is
Te(s, t) (allowing for absorption on the way), then the
energy transfer to the lattice site in dx from collisions with
electrons in which the electrons give up a fraction ‘‘f’’ of
their excess energy is

NsxAV dt
ds
k

dx
k

exp � jx� sj
k

� �
f ðEe � ElÞ

where Ee and El are the energy of electron and lattice ion,
respectively. The analysis related to f is given in Appendix
A. Integrating the contributions from all such infinitely
small strips as to the energy in location B (Fig. 1) gives:Z 1

�1
NsxAV dt

ds
k

dx
k

exp � jx� sj
k

� �
f ðEe � ElÞds ð13Þ

In this case, energy transfer during Dt (Dt P sp, where sp

is the electron–phonon collision time) due to absorption of
irradiated field and the collisional process can be written
after incorporating electron distribution function (Eq.
(7)) [22]:

DEtrans

A dxDt
¼
Z 1

�1

V fkB

k2
Nsx 1� w

Y ð2s� xÞ
2x

� �

� exp � jx� sj
k

� �
T eðs; tÞds

�
Z 1

�1

V fkB

k2
Nsx 1� w

Y ð2s� xÞ
2x

� �

� exp � jx� sj
k

� �
T lðx; tÞds

þ
Z 1

�1

I0f

k2

N sx

Nsx þ Nxs

� exp � jx� sj
k

� �Z s

x
f 0ðnÞdnds ð14Þ

where

Nsx

Nsx þ N xs
¼

1� w
Q ð2s� xÞ

x

� �
2� w
where f is the fraction of electron excess energy, which
transfers to lattice site during a single electron lattice site
collision. The first term on the left hand side of Eq. (14)
is energy gain by the substrate material through the colli-
sional process, first and second terms on the right hand side
represent electron and lattice energies, and third therm on
the right hand site is the energy gain of the electrons due to
the irradiated field.

The final temperature of the electrons in dx after the col-
lisional process can be readily found from the conservation
of energy, i.e.

Total electron energy after collision

¼ Total electron energy in during dt

� Change of lattice site energy

Total electron energy after collision isZ 1

�1

V kB

k2
Nsx 1� w

Y ð2s� xÞ
2x

� �

� exp � jx� sj
k

� �
ðT eðs; tÞ � fT lðx; tÞÞds ð15Þ

Total electron energy carried into dx during dt is

Z 1

�1

V kBð1� f Þ
k2

Nsx 1� w
Y ð2s� xÞ

2x

� �

� exp � jx� sj
k

� �
T eðs; tÞds

þ
Z 1

�1

I0ð1� f Þ
k2

1� w
Y ð2s� xÞ

2x

� �
2� w

� exp � jx� sj
k

� �Z s

x
f 0ðnÞdnds ð16Þ

Therefore, the conservation of energy yields:

Z 1

�1

V kB

k2
Nsx 1� w

Y ð2s� xÞ
2x

� �
exp � jx� sj

k

� �
� ðT eðs; tÞ � fT lðx; tÞÞds

¼
Z 1

�1

V kBð1� f Þ
k2

Nsx 1� w
Y ð2s� xÞ

2x

� �

� exp � jx� sj
k

� �
T eðs; tÞds

þ
Z 1

�1

I0ð1� f Þ
k2

1� w
Y ð2s� xÞ

2x

� �
2� w

� exp � jx� sj
k

� �Z s

x
f 0ðnÞdnds ð17Þ

Eqs. (14) and (17) can be re-written after considering the
electron distributions (Eq. (7)) for the lattice element dx

apart and for electrons passing an area A, i.e.
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DEtrans

A dxDt
¼
Z 1

�1

fk

k3
exp � jx� sj

k

� �
T eðs; tÞds

�
Z 1

�1

fk

k3
exp � jx� sj

k

� �
T lðx; tÞds

þ
Z jxj

0

w
fk

k3
exp � jx� sj

k

� �
T lðx; tÞds

�
Z jxj

0

w
fk

k3
exp � jx� sj

k

� �
T eðs; tÞds

þ
Z 1

�1

I0f

k2

1

ð2� wÞ exp � jx� sj
k

� �Z s

x
f 0ðnÞdnds

�
Z 1

�1

I0f

k2

w
ð2� wÞ exp � jx� sj

k

� �Z s

x
f 0ðnÞdnds

ð18Þ
andZ 1

�1

k

k2
exp � jx� sj

k

� �
T eðs; tÞ � fT lðx; tÞð Þds

�
Z jxj

0

wk

k2
exp � jx� sj

k

� �
ðT eðs; tÞ � fT lðx; tÞÞds

¼
Z 1

�1

kð1� f Þ
k2

exp � jx� sj
k

� �
T eðs; tÞds

�
Z jxj

0

kð1� f Þ
k2

exp � jx� sj
k

� �
T eðs; tÞds

þ
Z 1

�1

I0ð1� f Þ
k2ð2� wÞ

exp � jx� sj
k

� �Z s

x
f 0ðnÞdnds

�
Z jxj

0

I0ð1� f Þ
k2ð2� wÞ

exp � jx� sj
k

� �Z s

x
f 0ðnÞdnds ð19Þ

where k is the thermal conductivity, which makes use of the
simple kinetic theory result for the electron thermal con-
ductivity [26]:

k ¼ NV kBk
3

ð20Þ

The energy content of the small lattice site element dx

apart can be written as

DE ¼ A dxClT lðx; tÞ ð21Þ
where Cl = qCp. The energy gain of the small lattice ele-
ment during the small time interval dt is DE

dt . The expansion
of DE

dt yields:

DE
dt
¼ 1

dt
EðtÞ þ dtE0ðtÞ þ ðdtÞ2

2!
E00ðtÞ þ � � � � EðtÞ

" #
ð22Þ

or

DE
dt
¼ E0ðtÞ þ ðdtÞ

2!
E00ðtÞ þ � � � ð23Þ

Combining Eqs. (21) and (23) yield:

DE
dt
¼ A dx Cl

o

ot
½T lðx; tÞ� þ Cl

ðdtÞ
2!

o2

ot2
½T lðx; tÞ� þ � � �

� 	
ð24Þ
When the time increment approaches to thermal relaxa-
tion time (dt! ss), Eq. (24) reduces to

oe
ot
¼ DE

dtAdx
’ Cl

o

ot
½T lðx; tÞ þ ss

o

ot
ðT lðx; tÞÞ� ð25Þ

where e is the volumetric energy content of lattice site. The
energy gain of the small lattice element through collisional
energy transport can also be written as

DE
AdxDt

¼ 1

Adx
DEtrans

Dt
þ ss

o

ot
DEtrans

Dt

� �
 �
ð26Þ

Substituting Eq. (18) into Eq. (26) yields and the change of
lattice site energy is

DE
AdxDt

¼

Z 1

�1

fk

k3
exp �jx� sj

k

� �
T eðs; tÞds�

Z 1

�1

fk

k3
exp �jx� sj

k

� �
T lðx; tÞds

þ
Z jxj

0

w
fk

k3
exp �jx� sj

k

� �
T lðx; tÞds�

Z jxj

0

w
fk

k3
exp �jx� sj

k

� �
T eðs; tÞds

þ
Z 1

�1

I0f

k2

1

ð2�wÞ exp �jx� sj
k

� �Z s

x
f 0ðnÞdnds

�
Z 1

�1

I0f

k2

w
ð2�wÞ exp �jx� sj

k

� �Z s

x
f 0ðnÞdnds

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

þ ss
o

ot

Z 1

�1

fk

k3
exp �jx� sj

k

� �
T eðs; tÞds�

Z 1

�1

fk

k3
exp �jx� sj

k

� �
T lðx; tÞds

þ
Z jxj

0

w
fk

k3
exp �jx� sj

k

� �
T lðx; tÞds�

Z jxj

0

w
fk

k3
exp �jx� sj

k

� �
T eðs; tÞds

þ
Z 1

�1

I0f

k2

1

ð2�wÞ exp �jx� sj
k

� �Z s

x
f 0ðnÞdnds

�
Z 1

�1

I0f

k2

w
ð2�wÞ exp �jx� sj

k

� �Z s

x
f 0ðnÞdnds

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;
ð27Þ

Eqs. (19) and (27) are the energy transport equations of
interest for laser short pulse heating process. However, for
small rise of electron temperature during the low intensity
laser heating pulse prevents electron escape from the sur-
face. Consequently, the term w in Eqs. (19) and (27)
becomes zero.

Eqs. (19) and (27) can be transformed into differential
equations. The method of solution to be used in the follow-
ing analysis is the transformation of the simultaneous
differential–integral equations (19) and (27) using the Fou-
rier integral transformation, with respect to x [22]. This is
due to the fact that the resultant ordinary differential
equations may then be handled much more conveniently.
Consider first reduction of the set of equations to the differ-
ential equation of heat conduction.

The Fourier transformation of a function f(x) is defined
by

F ½f ðxÞ� ¼
Z 1

�1
expð�ixxÞf ðxÞdx ¼ F ðxÞ ð28Þ

and the Fourier inversion by

f ðxÞ ¼ 1

2p

Z 1

�1
F ðxÞðexpð�ixxÞdx ð29Þ

The Fourier transformation of the convolution integral:Z 1

�1
f ðnÞgðx� sÞds ð30Þ

is the produces of the transforms:

�f ðxÞ � �gðxÞ ð31Þ
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and the transform of function exp � jxjk
� �

is

2k

1þ x2k2
ð32Þ

Therefore, the Fourier transform of the function:

IX ¼
Z 1

�1

k

k3
exp � jx� sj

k

� �
T lðx; tÞds ð33Þ

will be a constant factor (the value of integral) multiplying
the transform of the function Tl(x, t), i.e.

F ½IX � ¼ kf

k3
T lF

Z 1

�1
exp � jx� sj

k

� �
ds

� 	
ð34Þ

or

F ½IX � ¼ kf

k3
T lF

Z 1

�1
exp � jx� sj

k

� �
HðjsjÞds

� 	
ð35Þ

where H(jsj) = 1 for �1 < s <1.
Therefore

F ½IX � ¼ kf

k3
T lF

Z 1

�1
exp � jx� sj

k

� �� 	
F fHðjsjÞdsg

6
kf

k3
T l

2k

x2k2 þ 1
dðxÞ ð36Þ

where d(x) is the Dirac delta function. Since this function
only has a value of 1 at x = 0, then the transform is

kf

k2
T l ð37Þ

Using these results, the Eqs. (19) and (27) can be Fourier
transformed, the result of which is

oe
ot
¼ kf

k3

2k

x2k2 þ 1
T e


 �
� kf

k2
T l

þ I0df
2k


 �
2k

x2k2 þ 1


 �
2d

d2 þ x2


 �
sp

� o

ot
kf

k3

2k

x2k2 þ 1
T e


 �
 �
� kf

k2
T l

þ I0df
2k


 �
2k

x2k2 þ 1


 �
2d

d2 þ x2


 �
ð38Þ

and

k

k2
½T e � f T l� ¼

kð1� f Þ
k3


 �
2k

x2k2 þ 1


 �
T e

þ I0dð1� f Þ
2k

2k

x2k2 þ 1


 �
2d

d2 þ x2


 �
ð39Þ

If the transform function T e is obtained from Eq. (39)
using Eq. (38), the result is

½f þ x2k2�oe
ot
¼ �x2kf T l � sp

o

ot
ðx2kf T lÞ

þ I0df
2d

d2 þ x2


 �
þ sp

o

ot
I0df

2d

d2 þ x2


 �
 �
ð40Þ
Insertion of oe
ot in terms of Tl (Eq. (25)) and multiplica-

tion of Eq. (40), which is in the transform domain, by
(ix)2 corresponds to second order differential in the real
plane. Hence the inversion of the above equation gives:

1þ ss

o

ot

� �
� k2

f
o2

ox2


 �
Cl

oT l

ot

¼ k
o2T l

dx2
þ sp

o

ot
o2T l

dx2

� �
þ I0df expð�djxjÞ

þ sp

o

ot
½I0df expð�djxjÞ� ð41Þ

Eq. (41) is similar to that obtained from the ballistic
approach [17]. It should be noted that the time derivative

of diffusion sp
o
ot

o2T l

dx2

� �� �
and source o

ot½I0df expð�djxjÞ�
� �

terms are included in Eq. (41) as similar to the that
obtained from the ballistic approach [17].

2.2.1. Parabolic heating model

If the terms sp
o
ot

o2T l

dx2

� �
and sp

o
ot ½I0df expð�djxjÞ� are

neglected in Eq. (41) for all f values, Eq. (41) becomes:

1þ ss

o

ot

� �
� k2

f
o2

ox2


 �
Cl

oT l

ot
¼ k

o2T l

dx2
þ I0df expð�djxjÞ

ð42Þ

which is the same as previously formulated kinetic theory
model [23], i.e. the time derivative of diffusion and source
terms are omitted in the previously formulated kinetic the-
ory approach. Eq. (42) can be re-written as

Cl

oT l

ot
¼ k

o2T l

dx2
þ f

k2o2

ox2
qCp

oT l

ot

� �
� Clss

o2T l

ot2

þ I0d expð�djxjÞ ð43Þ

Eq. (43) is a third order partial differential equation,
which can be decomposed into second and first order two
differential equations, i.e., when Eq. (43) is decomposed
into two equations, the resulting probable differential equa-
tions are

A
oT e

ot
¼ B

o2T e

dx2
� C½T e � T l� þ I0d expð�djxjÞ

D
oT l

ot
¼ C½T e � T l�

ð44Þ

where A, B, C, and D are the coefficients. To find the values
of A, B, C, and D, the following procedure is adopted, i.e.

D
o2T l

ot2
¼ C

oT e

ot
� oT l

ot


 �
ð45Þ

or

oT e

ot
¼ D

C
o2T l

ot2
þ oT l

ot
ð46Þ
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Similarly

D
o2

ox2

oT l

ot

� �
¼ C

o2T e

ox2
� o2T l

ox2


 �
ð47Þ

or

o2T e

ox2
¼ D

C
o2

ox2

oT l

ot

� �
þ o2T l

ox2
ð48Þ

Substitution of Eqs. (46) and (48) into Eq. (44), and
inserting C½T e � T l� ¼ D oT l

ot into Eq. (44), it yields:

ðDþ AÞ oT l

ot
¼ BD

C
o2

ox2

oT l

ot

� �
þ B

o2T l

ox2
� AD

C
o2T l

ot2

þ I0d expð�djxjÞ ð49Þ

After equating Eqs. (43) and (49), the coefficients A, B,
C, and D can be calculated, i.e.

A ¼ fkss

k2

B ¼ k

C ¼ fk

k2
1� fkss

qCpk2

� �

D ¼ qCp � fkss

k2

ð50Þ

Eq. (44) is identical to Eq. (1) given in the two-equation
model. Consequently, setting the coefficients of Eqs. (44)
and (1), it yields:

fkss

k2
¼ Ce

fk

k2
1� fkss

qCpk2

� �
¼ G

qCp � fkss

k2
¼ Cl

ð51Þ

where ss = Ce/G [10] and Ce = cTe (where c is constant and
c = 96.6 J/m3 K2 for copper). Moreover, the electron pho-
non coupling factor is temperature dependent, which can
be written as [24]:

G ¼ p2mNV 2

6spðT eÞT e

ð52Þ

Eq. (52) can be used for lattice site temperature less than
the Debye temperature (343 K for copper). Since the elec-
tron–phonon collision time sp � 1

T e
, the electron phonon

coupling factor becomes constant as temperature increases
[5,27], i.e. it becomes independent of temperature.

The electron mean free path (k) can be written as [28]:

k ¼ V s ð53Þ
Table 1
Thermal properties of copper at 300 K [1]

Td (K) c (J/m3 K2) d · 107

(1/m)
m · 10�31

(kg)
Cl · 106

(J/K m3)
k (W/m

343 96.6 7.1 9.1 3.43 386
where s is the electron relaxation time, which is [29]:

s ¼ 3mk

p2Nk2
BT e

where N and m are electron number density and effective
mass of free electrons, respectively. kB is the Boltzmann’s
constant. The electron mean free path can be determined
from Eq. (53). The range of mean free path determined is
given in Table 1.

2.2.2. Initial and boundary conditions

To solve Eq. (41), the following initial and boundary
conditions are employed.

Initially (before the initiation of the laser pulse) the lat-
tice and electron sub-systems are considered at the same
initial temperature (T0), i.e.

At time t ¼ 0! T l ¼ T 0 and T e ¼ T 0

The substrate material surface is considered to be insu-
lated (no convective and radiative heat losses from the sur-
face), i.e.

At the surface at x ¼ 0! oT l

ox
¼ 0 and

oT e

ox
¼ 0

The substrate material is considered to extend at consid-
erable depth from the surface; in which case, electron and
lattice temperatures attain equilibrium at temperature T0,
i.e.

At far depth from the free surface x

¼ 20� dðd being absorption depthÞ
! T l ¼ T 0 and T e ¼ T 0
2.3. Numerical solution

The numerical method employed uses a explicit finite
difference scheme, which is well established in the literature
[30]. Although similar arguments are presented in the pre-
vious study [23], in order to secure the completeness of the
arguments the stability criteria is introduced herein. The
stability criteria for the heating model is as follows:

1 P ABS
fCl

Dt
þ 2k2Cl

1

DtðDxÞ2

" #
� 2kf

1

ðDxÞ2

" #" #

þABS
kf

ðDxÞ2
� 2k2Cl

DtðDxÞ2

" #
þABS

2k2Cl

DtðDxÞ2

" #

�ABS
fCl

Dt
þ 2k2Cl

1

DtðDxÞ2

" #( )
ð54Þ
K) G · 1016

(W/m3 K)
ss (ps) sp (ps) N · 1028

(1/m�3)
V (m/s)

26 0.1562 0.024 8.4 5010



Table 2
The coefficients and the range of values used in the simulations

k (m) f A · 104 (W/m3 K) B (W/m K) C · 1016 (W/m3 K) D · 106 (J/m3 K) I0(1 � rf) (W/m2)

10�9–5 · 10�10 10�3–10�5 2.52–2.09 386 24–28 3.27–3.49 0.5 · 1012

0.4

0.6

0.8

1.0

ΔR
/(

ΔR
) m

ax

Two-Eq. Model

Experiment [30]

Improved Kin.Theory Model
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where Dx is spatial increments in the x axis while Dt is the
time increment.

The step input laser pulse with power intensity
0.5 · 1012 W/m2 is considered in the simulations. It is
assumed that the laser wavelength is in the visible spectrum
(630). Thermophysical properties of copper at 300 K and
laser pulse properties used in the computations are given
in Tables 1 and 2.
0.0

0.2

0.0 0.6 1.2 1.8 2.4 3.0

TIME (ps)

Fig. 2. Temporal variation of normalized reflectivity change obtained
from the previous study [30], two-equation model, and improved electron
kinetic theory approach.
2.4. Validation of numerical prediction

To validate the present predictions, the transient
reflectivity data given in the previous study [31] are consid-
ered. It should be noted that in the early heating period, the
lattice temperature change is considerably small and the
surface reflectivity change is due to electron tempera-
ture rise in this period. In this case, the reflectivity change
can be related with the electron temperature change [32],
i.e.

DR
ðDRÞmax

¼ DT e

ðDT eÞmax

In order to proceed with the comparison, the experi-
mental condition including the laser pulse used in the
experiment is employed in the simulations [30]. In the pre-
vious experiment, the laser source was a colliding-pulse
mode-locked (CPM) dye laser with a wavelength 630 nm
[30]. The laser source term, for the validation simulations,
is

0:94
1� R

tp

dJ exp �xd� 2:77
t
tp

� �2
 !

where tp is full-width-at-half-maximum (FWHM) duration
of the laser pulse, and t = 0 is defined at the moment when
the peak of a laser pulse arrives at the metal surface. J is the
total energy carried by a laser pulse divided by the laser
spot cross section. In the validation simulations, tp = 96 fs
and J = 10 J/m2 are employed.

Fig. 2 shows the temporal variation of the normalized
reflectivity change obtained from the experiment and pre-
dicted from two equation as well as improved electron
kinetic theory approach for gold film. It is evident that
the improved electron kinetic theory approach and two
equation model predict similar normalized reflectivity.
Moreover, the results obtained from the improved electron
kinetic theory approach give slightly closer results to exper-
imental data as compared to that corresponding to the
two-equation model, particularly for time period less than
1 ps.
3. Results and discussion

Laser short pulse heating of copper is modelled using an
electron kinetic theory approach. Since the behavior of the
electron movement in the early heating period results in
non-equilibrium energy transport in the electron sub-sys-
tem, the formulation of the heating problem allowing the
rate of electron excess energy gain and dissipation in this
period is considered. The improved formulation of the elec-
tron kinetic theory approach accounts for the rate of elec-
tron excess energy gain and dissipation in the early heating
period different than those corresponding the previously
developed electron kinetic theory approach and the two
equation model. This, in turn, gives the realistic electron–
phonon coupling mechanism in the heating model similar
to that presented in the ballistic approach [17]. Moreover,
the two-equation and the kinetic theory models for the par-
abolic heating case are also presented for the comparison
purposes. The variable and constant physical properties
are introduced in the numerical simulations.

Fig. 3 shows lattice site temperature obtained from dif-
ferent heating models for constant and variable properties
for two heating periods. The variable properties case pre-
dicts slightly higher lattice site temperatures in the surface
region than that corresponding to the constant properties
case. This is because of the electron–phonon coupling fac-
tor (G), which does not vary considerably with changing
electron temperature (Eq. (52)). The similar situation is
also observed in the previous study [30]. Moreover, the
two-equation and the parabolic electron kinetic theory
models predict almost identical temperature profiles for
the constant and variable properties cases. This may be
explained in terms of Eqs. (1) and (44) and their coeffi-
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Fig. 3. Lattice site temperature distribution inside copper for (a)
1 · 10�13 s and (b) 4 · 10�12 s heating period.
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cients, i.e. Eq. (1) representing the two-equation model and
coefficients of the differential terms are almost identical to
Eq. (44), which corresponds to the previously formulated
electron kinetic theory approach. In the case of improved
kinetic theory formulation, lattice site temperature is less
than those corresponding to other models employed. This
indicates that in the early heating period, electrons absorb-
ing energy from the irradiated field do not transfer all their
excess energy to lattice site through collisional process.
This occurs because of the few number of collisions, which
take place in the early heating period, i.e. excess electron
energy transferring to lattice site is considerably less in
the early heating period. The improved electron kinetic the-
ory approach results in realistic electron–phonon coupling
between the electrons and the lattice site in the early heat-
ing period, which is particularly true in the surface vicinity
of the substrate material. This can be observed from Fig. 2;
in which case, the experimental results for reflectivity
change agree well with the improved electron kinetic theory
predictions. It should be noted that Fig. 2 is plotted for
gold film [31], i.e. the experiment was carried out for gold
substrate; consequently, simulations were repeated for gold
substrate due to comparison.

Fig. 4 shows temporal variation of lattice site tempera-
ture at the surface as obtained from the different models
with constant and variable properties cases. In general,
temporal variations of lattice site temperature due to differ-
ent models and properties are similar, provided that some
small differences in temperature profiles occur. The similar
behavior of temperature profiles is because of the magni-
tude of temperature rise, which is in the order of 12 �C.
In the early heating period, the rise of lattice site tempera-
ture is considerably small, which is particularly true for
improved kinetic theory model. In the early heating period
(t < 10�13 s) electrons undergo few collisions, since the time
for an electron–phonon collision is in the order of 0.02 ps
[1], i.e. lattice site heating by electrons through collisional
process is not possible for times less than the collision time.
Moreover, improved electron kinetic theory formulation
allows non-equilibrium energy transport in the electron
and lattice sub-systems. Consequently, the rate of lattice
site temperature rise in the early heating period differs than
that corresponding to parabolic formulation of the electron
kinetic theory and the two-equation models. This situation
occurs for the constant as well as variable properties cases.
It should be noted that constant and variable properties
cases represent the results obtained from the simulations
due to constant and variable properties being employed
in the governing equation, respectively. In this case, elec-
tron excess energy increases due to the absorption of the
irradiated field and the coupling between the electron and
lattice site is considerable small, electron temperature rises
rapidly while lattice site temperature rise is gradual in the
early heating period. This behavior is also observed for
the situation occurring in the hyperbolic two-equation

model [10]. The term sp
o
ot

o2T l

dx2

� �
in Eq. (41) suppresses lat-

tice site temperature rise in the early heating period. The
parabolic formulation of electron kinetic theory predic-
tions agreed well with the two-equation model (parabolic
heating model). Moreover improved electron kinetic theory
formulation with constant properties case results in exces-
sive delaying of the rise of lattice site temperature, i.e. the
delay is in the order of 1.2 · 10�13 s. However, in the case
of variable properties case, this delay is in the order of
6 · 10�14 s, which is more realistic than the constant prop-
erties case due to few number of collisions taking place
during this time period.
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Fig. 5. Electron temperature distribution inside copper for (a) 10�13 s and
(b) 4 · 10�12 s heating period.
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Fig. 5 shows electron temperature distribution inside the
surface region of the substrate material for two heating
periods. Electron temperature decays gradually in the
surface vicinity while it decays sharply in the region next
to the surface vicinity. This is because of the absorption
of the irradiated energy, which decays exponentially with
increasing depth from the surface (Lambert’s law). In the
early heating period, electron temperature profiles
corresponding to all models employed are similar provided
that constant properties case results in relatively low tem-
perature magnitudes. As the heating period increases to
4 · 10�12 s, temperature distributions corresponding to dif-
ferent models vary considerably. This occurs because of the
collisional energy transport process, in which case, electron
excess energy transfers to lattice site at different rates. It
should be noted that specific heat capacity of electrons is
lower than lattice site specific heat capacity (Cpe/Cpl �
10�2), large amount of electron excess energy transfer to
lattice site results in substantial change in electron temper-
ature while lattice site temperature increase is small. This
situation can be seen when comparing Figs. 3 and 5. In
the case of improved electron kinetic theory formulation,

the term sp
o
ot

o2T l

dx2

� �� �
in Eq. (41) further suppresses the

electron excess energy transfer to lattice site. This results
in high electron and low lattice site temperatures in the
region irradiated by the laser beam.
4. Conclusions

Laser short-pulse heating of copper is considered. The
two-equation heating model and parabolic formulated elec-
tron kinetic theory approach, and improved electron
kinetic theory formulation are introduced when modelling
the non-equilibrium energy transport in the electron and
lattice sub-systems. In order to account for the influence
of temperature dependent properties on the predictions,
constant and variable physical properties are introduced
in the analysis. A numerical method is employed to solve
the governing equations of energy transport. It is found
that in the early heating period (10�13 s), all the models
employed predict almost identical electron temperature dis-
tribution inside the substrate material. This occurs because
of electrons, which undergo few collisions with lattice site
during the early heating period. Consequently, the amount
of electron excess energy gain and dissipation, due to
absorption of the irradiated field and collisional process,
becomes almost the same for all the models. As the heating
period progresses (4 · 10�12 s), the amount of energy trans-
port from electrons to lattice site through the collisional
process is governed by the electron–phonon coupling pro-
cess. In this case, the two-equation model and previously
formulated electron kinetic theory approach result in early
rise of lattice site temperature. In the case of improved elec-

tron kinetic theory formulation, the term sp
o
ot

o2T l

dx2

� �� �
in

Eq. (41) suppresses the lattice site temperature rise, partic-
ularly in the early heating period. Consequently, improved
formulation of electron kinetic theory model predicts low
lattice site temperature rise as similar to that corresponding
to the hyperbolic and ballistic heating models. The two-
equation model (parabolic heating model) predictions
agreed well with the previously formulated electron kinetic
theory model.
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Appendix A. Formulation of f

The fraction of electron excess energy transfer during
the time comparable or slightly greater than the electron–
phonon collision time (sp) can be written in terms of the
energy balance across the section dx in the substrate mate-
rial, i.e.

f ¼ ðElectron energyÞin � ðElectron energyÞout

ðElectron energyÞin � ðPhonon energyÞ
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or

f ¼ ðT eÞin � ðT eÞout

ðT eÞin � T l

ð55Þ

where (Te)in is the temperature of an electron entering
the section, (Te)out temperature of the an electron leaving
the section, and Tl is the phonon temperature. f takes the
values 0 6 f 6 1.
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